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Evaluation of Thermal Conductivity from 
Temperature Profiles I 

G. C. Bussolino, 2 J. Spigiak, a'3 F. Righini,2A. Rosso, 2 P. C. Cresto, 2 and 
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A new dynamic technique for the measurement of thermal conductivity is being 
developed at IMGC. The experiment consists in bringing the specimen to high 
temperatures with a current pulse and in measuring the temperature profiles 
during the free cooling period. Different techniques can be used to extract the 
information on thermal conductivity from the profiles. The numerical computa- 
tion of thermal conductivity from the experimental temperature profiles in 
absolute space is possible, but it is difficult and cumbersome because one must 
know and take into the account the exact position of the infinitesimal elements 
of the specimen in different profiles. Computations in tube-space (a fictitious 
space where no thermal expansion occurs) are simpler and lead to less complex 
numerical computations. Complementary techniques to evaluate thermal con- 
ductivity as a function of temperature or at constant temperature are presented 
with a discussion of advantages and disadvantages of each method. Computer 
simulations have tested the precision of the complex software. Numerically 
generated temperature profiles from known thcrmophysical properties have 
been obtained and thermal conductivity has been recomputed from the profiles. 
The relative difference using different computational approaches and different 
fitting functions is always less than 0.1%. 
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1. INTRODUCTION 

New dynamic measurement methods, based on applications of high-speed 
scanning pyrometry [1 ], are currently under development at the Istituto di 
Metrologia "G. Colonnetti" (IMGC). The experimental apparatus and the 
measurement techniques for thermal conductivity [2] and hemispherical 
total emittance [3] have been described in earlier publications; 
measurements on niobium are in progress. The dynamic experiment 
consists in bringing the specimen to high temperatures with a subsecond 
current pulse and in measuring during the free cooling (lasting 10-20 s) the 
evolving temperature profiles on the specimen via high-speed scanning 
pyrometry [4]. Figure 1 presents a schematic diagram of the specimen and 
of the optical instrumentation. 

Dynamic experiments, like the one described before, must take into 
account the role played by thermal expansion, regarding both its effect on 
geometrical quantities and on thermophysical properties and its influence 
on the measurement technique. A microsecond time resolution scanning 
pyrometer will always measure temperatures in predefined positions in 
space, but in different profiles the measured temperature will be that of 
different points of the specimen, on account of thermal expansion effects. 

SPECIMEN 

W I R E ~  

PYROMETER 

TCI 

HIGH-SPEED SCANNING 
PYROMETER 

Fig. 1. Schematic representation (from Ref. 2) of the new 
dynamic technique used either for thermal conductivity or for 
hemispherical total emittance. /, current passing through the 
specimen; V, voltage drop across the central part of the 
specimen; TC1 and TC2, chromel-alumel thermocouples. 
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An earlier publication [5-1 considered the mathematical model of 
dynamic thermal conductivity experiments and presented different forms of 
the basic heat transfer equation, all of them taking fully into account 
thermal expansion effects. The present paper deals with different approaches 
that may be used to compute thermal conductivity from temperature 
profiles, assuming that the other necessary thermophysical properties are 
either accurately known or have been measured by other techniques. Ther- 
mal expansion effects are always considered and the different methods are 
analyzed both regarding their precision (with inevitable errors due to the 
estimation of derivatives and to the large amount of computer calculations) 
and their capability to extract the maximum amount of information from 
the measured temperature profiles. 

2. ABSOLUTE SPACE 

We assume a set of coordinate axes fixed in the laboratory with the 
specimen constrained at x = 0 and free to expand in the positive x-direc- 
tion. The specimen is heated by an electrical current I and taken to high 
temperature, then the current is cutoff and the specimen cools freely to 
room temperature. Temperature profiles may be measured during heating 
and/or during cooling. Assuming the "long thin rod approximation" [6], 
in a previous paper [5] the basic heat transfer equation applicable to this 
dynamic heating experiment was given as 

1 ~ [ 8T\  pc I2 G:Pc~7(T 4 -  T 4) #cI ~T DT 
[ 2c Sc '2--1 ~r ,2 SoOxo\ ~Xc/ Sc So St Oxc=6~(cv)~-~ (1) 

The subscript c indicates that all quantities (both thermophysical proper- 
ties and geometrical quantities) are corrected for thermal expansion effects. 
Equation (1) represents the general case; during cooling ( I=  0) two terms 
vanish. The quantities in Eq. (1), listed without the subscript c, are as 
follows: 2, thermal conductivity; e, hemispherical total emittance; p, electri- 
cal resistivity; #, Thomson coefficient; cp heat capacity; &, density; p, 
perimeter; S, cross-sectional area; a, Stephan Boltzmann constant; T, tem- 
perature; Ta, ambient temperature; and t, time. Temperature derivatives 
with respect to space ~T/Ox, 02T/Ox 2, and time DT/Dt ("material" 
derivative [7]) are also present in Eq. (1). 

Equation (1) has several different forms [5], depending on how the 
time-dependent heat capacity term is expressed. The following sections 
examine in detail various forms of the partial differential equation, showing 
their various advantages and disadvantages when used to compute thermal 
conductivity from temperature profiles in absolute space. 
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2.1. Material Derivative 

Assuming a knowledge of all thermophysical properties except the 
unknown thermal conductivity and an accurate experimental measurement 
of temperature profiles (from which temperatures and all the derivatives 
with respect to time and space may be computed), Eq. (1) may be used to 
obtain the thermal conductivity. The computation of the various 
derivatives requires the following steps (see Fig. 2): 

(a) take point Pi (in position x and time t in one profile) and 
identify the location Po (of the specimen), where point Pi was 
when the specimen was cold; 

(b) identify where location Po has moved on each measured profile 
( .... P i - l , P i ,  P i + l  .... ); 

(c) the set of temperatures representing the temperature vs time 
history of location Po must be fitted and the derivative DT/Dt 
computed (derivation following the motion; see Ref. 5); and 

(d) by selecting a window on the profile near Pi and by fitting 
the temperature T=f(x), one may compute the derivatives 
OT/Ox~, O2T/Ox~. 

Unfortunately, this procedure is extremely cumbersome and requires large 
amounts of computation because all the steps (a to d) must be repeated 
when another point on the profiles is selected. Considering that one 

I) 0 

LOCATION 

Fig. 2. Schematic representation of computations of the 
"material" derivative DT/Dt in absolute space according to 
Eq. (1). 
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dynamic experiment may produce a set of approximately 100 profiles (each 
defined by 200-500 temperature points), it is clear that even a partial 
analysis according to this method requires hours of interactive computer 
time. Interaction with the computer is necessary because the temperature vs 
time function is unknown a priori and noise and disturbances on the 
profiles make a computer-made selection unreliable. 

2.2. Separate Variables 

An alternative possibility for computations in absolute space is to use 
the second form of the differential equation presented in Ref. 5, where 
variables x, t are completely separate. In this equation, the time-dependent 
heat capacity term is 

ao(%) fxd oarax 
at J0 dT -& (2) 

where o~c = 6oSc is the linear density of the specimen. In this case, aT/at is 
computed for x = constant (taking a vertical line at the chosen x-position 
in absolute space) and the amount of computation needed for the time 
derivatives is drastically reduced. Unfortunately, a major problem is the 
numerical calculation of the integral in Eq. (2), that requires the computa- 
tion of aT/at at all the integration points from the constraint (x = 0) to the 
chosen x-position for each profile. The initial and final part of each profile 
cannot be measured experimentally because temperatures in these regions 
are too low for high-speed pyrometry. The ends of each profile are known 
only by interpolation between the pyrometer readings and the temperatures 
measured by thermocouples spot-welded on the specimen as close as 
possible to the clamps (see Fig. 1). This interpolated part of the profile is 
adequate for thermal expansion corrections, but it cannot be used for 
evaluating the temperature derivatives and consequently any computation 
of the integral of Eq. (2) is inaccurate. 

In conclusion, computation of thermal conductivity from experimental 
temperature profiles in absolute space is possible, but it has severe dis- 
advantages. Computations according to Eq. (1) require large amounts of 
interactive time and computations according to Eq. (2) are inaccurate. 

3. TUBE-SPACE 

Tube-space does not exist: it is an imaginary space where no thermal 
expansion occurs and it is so named because in tube-space the molecules 
of the material always remain fixed in a location. The name is chosen in 



530 Bussolino et al. 

relation to our tubular specimens, but the concept is clearly usable for any 
specimen shape. Imagining that the dynamic experiment occurs in tube- 
space leads to considerable simplifications in mathematics and computa- 
tion, so this approach is a valid alternative on account of the mentioned 
difficulties for computations in absolute space. 

In tube-space all quantities will be identified by the subscript u 
(meaning uncorrected for thermal expansion). Thermophysical properties 
in tube-space maintain their temperature dependence, but are uncorrected 
for thermal expansion effects and a careful analysis of how properties have 
been measured is necessary to use the correct numerical expression [8]. 
Some useful relations for corrected and uncorrected geometrical quantities 
and for space derivatives are 

pc= pu(l + f )  

St = Su(1 + f)2 

6r + f ) -  3 

aT aT 
- -  (1 + f ) - '  

axe -- 0xu 

(3) 

d2T ~2T 
, : -- ~--~2 (1 + f )  -2 
(TXc 

where f ( T )  = AL(T)/Lz93 is the thermal expansion function of the material 
under consideration (relative expansion of a small element at constant 
temperature T with respect to its length at ambient temperature). 

One form of the heat transfer equation applicable to the dynamic 
thermal conductivity experiment in tube-space is 

0 (2u aT)+pu I2~ ~,p.~r(T 4 - T  4) # u l a T =  6,(Cp),aT 
a x . .  S u su Su aXu (4) 

Equation (4) is immediately derived from Eq. (1) taking into account that 
in tube-space DT/Dt = aT/&. Each term in Eqs. (1) and (4) has a defined 
physical meaning: it is the power per unit volume due to the particular 
physical process taking place in the control volume at time t (heat conduc- 
tion, Joule heating, radiation loss, Thomson heating, heat storage). The two 
equations refer to the same experiment, so they must be related by a com- 
mon factor, which is easily identified taking into account that in Eq. (1) the 
specimen expands, so the power is distributed over larger volumes with the 
expansion of the specimen, while this does not happen in the imaginary 
tube-space. The mathematical relation between each power density term is 

(power density in tube-space)= (power density in absolute space) (1 + f ) 3  
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Fig. 3. Typical transformation of a temperature profile from 
absolute space to tube-space. For viewing purposes the thermal 
expansion correction is exaggerated (a correction 10 times bigger 
than in reality has been used). 

Taking into account the relation between power density terms, the evalua- 
tion of thermophysical properties leads to the following relations: 

(%)c = (cp)u 

#o = tt, 

2c = ).u(l + f ) - i  

P,:=Pu(l + f)  

e,~ = ~,u(1 + f ) -  2 

(5) 

The computation of thermophysical properties in tube-space requires 
a set of temperature profiles as if they were measured in a space where no 
thermal expansion occurs. Experimental profiles are measured in absolute 
space: they are transformed to tube-space by "shrinking them backward" 
as if the specimen did not expand (see Fig. 3). For this operation a 
knowledge of another thermal expansion function g(T)= AL(T)/L(T) is 
necessary to perform the transformation [-g(T) is the relative expansion of 
a small element at constant temperature with respect to its length at tem- 
perature T, with AL=L(T)--L293]. Numerical values for the thermal 
expansion functions f(T) and g(T) for niobium, the material for which 
measurements are in progress, may be found in Ref. 9. 
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3.1. Thermal Conductivity as a Function of Temperature 

The technique to evaluate thermal conductivity as a function of 
temperature from profiles in tube-space has already been described [2]. 
This is done by opening a vertical window on the profiles (see Fig. 4), and 
writing and solving a set of linear equations of the unknown thermal con- 
ductivity (as a function of temperature) for the middle point of each profile 
in the window. The space derivatives are computed by fitting the portion 
of each profile in the window, and the evaluation of temperature vs time 
of each point is simple because in tube-space each infinitesimal portion of 
the specimen remains at a fixed x-position during the entire experiment. 
The overdetermined set of linear equations is solved by least-squares 
techniques. Details of the mathematical procedure and of the various com- 
puter programs are described in an earlier publication [2]. 

The main advantages of this technique are that 

(a) a simple transformation (from absolute space to tube-space) 
computed only once for each set of profiles is necessary; 

(b) the thermal conductivity may be evaluated over a large tem- 
perature range; and 

Fig. 4. Three-dimensional view of the evolving temperature 
profiles in a simulated heating experiment in tube-space. 
The shaded area shows a typical vertical window used for 
computations of thermal conductivity and of its temperature 
dependence. 
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(c) the evaluation may be performed in different parts of the profiles, 
avoiding regions where disturbances on the surface of the 
specimen might create problems in the computation of 
derivatives. 

The main disadvantage of this computational procedure is that the best 
regions of the profiles for the evaluation of thermal conductivity cannot 
be used. Thermal conduction is higher at both ends of high-temperature 
profiles, in the regions characterized by steep gradients. Unfortunately in 
cooling experiments (the best ones to evaluate thermal conductivity), the 
ends cool rapidly and a vertical window cannot be opened in those regions, 
because only a few profiles are available and hence the temperature vs time 
history of these locations cannot be obtained accurately. An alternative 
technique was developed to extract the information available in regions 
with steep temperature gradients at the ends of the profiles. 

3.2. Thermal Conductivity at a Fixed Temperature 

A different form of Eq. (4) in tube-space must be considered to 
evaluate thermal conductivity at a fixed temperature. We may assume that 
an identical experiment occurs, but in this case the specimen moves and we 
observe what happens in the fixed control volume. An identical experiment 
will produce identical temperature profiles on the specimen and we are 
interested, among all possible motions that the specimen may have, in the 
particular speed that will always maintain the same temperature in the 
control volume. When temperature is constant with time in the control 
volume, then OT/dt=O, but we observe mass flow through the control 
volume due to the motion of the specimen. The expression for mass flow 
(convection term) has already been considered [5] and the new form of 
the heat transfer equation is 

~3T'~ puI 2 euPuO(T 4 -  T 4) l~uI OT (3 2~ j + - -  - 6u(Cp)u vu t3T 
Oxu ~x. S~ Su Su ~xu Ox~ (6) 

where vu(t) is the speed of the specimen in tube-space when we observe no 
temperature change in the control volume. In tube-space, the hypothetical 
heating experiment just described is equivalent to moving all profiles until 
they cross each other at a fixed temperature and this can be done at either 
side of the profiles (on the left-hand side with a positive speed and on the 
right-hand side with a negative speed). The separate consideration of each 
side is necessary because the temperature gradient OT/~xu changes sign in 
the two regions. 

840/14/3-13 
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If we now return from the imaginary experiment to a classical set of 
profiles in tube-space, all the information necessary to perform computa- 
tions according to Eq. (6) is available. By opening a horizontal window on 
the profiles (see Fig. 5), the crossing of line T=  constant with the profiles 
provides a set of locations in tube-space with constant temperature. The 
distances between these locations provide the space that each profile (iden- 
tified by a certain time) should travel so that all profiles cross together at 
the same point and from these data (space, t ime)the speed of each side 
may be computed. The concept may be clarified with the help of Fig. 6, 
which shows the left-hand side of the profiles (a similar reasoning holds for 
the right-hand side). 

When we want to write Eq. (6) for point Pi on the ith profile, we need 
to imagine that all profiles would cross each other at Pi with the same tem- 
perature. This would require a motion of the specimen such that point PI 
reaches P; (distance traveled x i - - X  1) in the time tl - ti. A similar reasoning 
holds for all other points P2 ..... P, .  From the distance that the specimen 
should move and the relative time, a relation space =function(time) may be 
obtained and by derivation the speed Vu may be computed. It should be 
remembered that in the imaginary experiment in tube-space (no expan- 
sion), all the points of the specimen move with the same speed Vu, but this 

Fig. 5. Three-dimensional view of the evolving temperature 
profiles in a simulated heating experiment in tube-space. 
The shaded area shows the horizontal window (centered at 
T =  1500 K) used for computations of thermal conductivity at 
a constant temperature. 
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Fig. 6. Two-dimensional view of the left-hand side of the 
evolving temperature profiles in a simulated heating experi- 
ment. Equations (6) are written and solved for points P1, 
P2,..., Pn at a constant temperature; these points are at the 
center of the horizontal window used for computations. 

speed may arbitrarily change with time. So the computation of speed vu for 
all points P1, P2 ..... Pn requires one fitting of positions xl, x2,..., xn versus 
time tl, t2 ..... tn and the derivation of the fitted function to obtain vu(tl), 
vu(t2) ..... vu(tn) for all the P points. 

The horizontal window opened on the profiles provides the same 
environment as described for a vertical window. Temperature derivatives 
with space may be computed by fitting the portion of each profile in the 
window. This leads to an overdetermined set of linear equations in the 
unknown parameters (the value of 2 and of its temperature derivative 
d)~/dT at T-- constant) that may be solved by least-squares techniques. 

The set of programs that computes thermal conductivity at a fixed 
temperature has many similarities with those used for a vertical window. 
The left-hand side of Eqs. (4) and (6) are identical; in the right-hand side 
the computation of Vu of Eq. (6) is similar to the computation of ~T/Ot of 
Eq. (4). From a practical point of view computations in a vertical or in a 
horizontal window are just options in the group of computer programs to 
process experimental temperature profiles. 

The main advantages of the computational technique at a constant 
temperature are 

(a) the use of regions of profiles with steep temperature gradients, 
where heat conduction is the dominant physical process; 



536 Bussolino et al. 

(b) the use of different locations on the surface of the specimen, 
averaging potential problems of one location with other points 
on the surface of the specimen; 

(c) the complementarity with the other approach (vertical window) 
with the possibility of extracting more information from the same 
set of profiles; and 

(d) the possibility to check the independence of thermal conductivity 
from the temperature gradient. 

Some disadvantages of this technique are as follows. 

(a) Thermal conductivity is measured at one temperature only, so 
several computations and a fit of )~ vs T are needed for evaluating 
the temperature dependence of 2. 

(b) An estimate of the temperature derivative of thermal conductivity 
is useful for the computation. The term including d2/dT is 
generally small, therefore the estimated value does not influence 
much the computation. In the case of gross discrepancies 
between the estimated value and the final result, iterative com- 
putations might be necessary. 

In conclusion, computations in tube-space seem to be the best solution 
in extracting all the information on thermal conductivity from the 
temperature profiles. Operation with a vertical window provides thermal 
conductivity over a wide temperature range; operation with a horizontal 
window computes 2 at a constant temperature but may extract the infor- 
mation from regions where heat conduction is the dominant physical 
process. 

4. COMPUTER SIMULATIONS 

The evaluation of thermal conductivity from experimental temperature 
profiles always require large amounts of numerical calculations. Some 
round-off errors are inevitable, but the main concerns are either software 
errors in the complex computer programs or wrong assumptions in the 
numerical computation model. For instance, if the temperature profile in 
the (vertical or horizontal) window is not representable by a third-degree 
polynomial, then the space derivatives will be computed incorrectly and the 
width of the window may influence this error. A certain amount of subjec- 
tive judgement is often necessary when selecting the best fittings for tem- 
perature vs time or position vs time. Least-squares fittings are presently 
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Fig. 7. Block diagram of computer simulations. 

implemented either with polynomials or with splines, and the function 
selection may influence the computed results. 

The capability of the computer programs to evaluate correctly the 
thermal conductivity from the temperature profiles was assessed by 
performing some computer simulations and data processing of simulated 
profiles as shown in Fig. 7. 

A computer program that simulates the dynamic heating experiment 
was prepared. This program presently performs simulations in tube-space; 

0.03 

M 0.02 
72 

~2 
0.01 

< 0.00 
:w 

-0.01 

/ 61 !q Q 
: 7: ! ' .  G �9 ', 

-~ " : ' b %  d~-d.: d i l~b~ ~ >,' w ~ '~ 
?- o "t~- :' ' :  '>~ "~i' 

0" �9 �9 ~ U 

o polynomial  fit  
�9 spl ine fi t  

I , , i , I , , , , 

1ooo 15oo 

TEMPERATURE, K 

2000 

Fig. 8. Relative difference between assumed and computed thermal 
conductivity in a simulated heating experiment. Calculations performed 
with a vertical window using different functions for fitting temperature vs 
time. 
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Fig. 9. Relative difference between assumed and com- 
puted thermal conductivity in a simulated heating experi- 
ment. Calculations performed with a horizontal window at 
1500 K using different functions for fitting space vs time. 

a more complex version operating in absolute space is in preparation. 
From the input data (thermophysical properties, geometrical quantities, 
initial and boundary conditions, experimental conditions), a set of 
simulated temperature profiles is generated. The smooth profiles (free from 
noise and known numerically for the entire length of the specimen) are 
then fed to the data processing programs to recompute thermal conduc- 
tivity. The results of recomputations of 2 from these computer simulations 
for a vertical window and for a horizontal window are presented in Figs. 8 
and 9; respectively. When operating on simulated computer profiles 
(smooth and free of noise), both polynomials and splines are adequate and 
provide similar results. Recomputations of thermal conductivity with a ver- 
tical window show a slight positive bias (of the order of 0.015%) with all 
relative differences being between 0.005 and 0.025% (see Fig. 8). The same 
recomputations for a horizontal window show typical relative differences in 
the band _+0.025%, with one point with a maximum relative difference of 
- 0 . 1 %  (see Fig. 9). 

5. CONCLUSIONS 

The evaluation of thermal conductivity from a set of temperature 
profiles obtained in a dynamic experiment is not a trivial task. Computa- 
tions in absolute space are possible but require large amounts of interactive 
computer time. Simpler computation techniques are available when operat- 
ing in tube-space and the procedures to obtain thermal conductivity as a 
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function of temperature (vertical window) or at a constant temperature 
(horizontal window) have been described in detail. For  the latter method, 
a new form of the partial differential heat transfer equation has been 
presented. 

Computer  simulations of heating experiments in tube-space indicate it 
is possible to compute thermal conductivity from simulated temperature 
profiles with adequate precision, the computat ional  error being less than 
0.1%. Further work in this area is necessary, both to obtain the profiles 
in absolute space and to simulate the cooling phase of the experiment, 
because profiles collected during cooling depend only on three properties 
(heat capacity, hemispherical total emittance and thermal conductivity) 
and heat conduction becomes an important  factor as cooling progresses. 
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